domingo, 12 de junio de 2011

¿Qué es un agujero negro ?

Un agujero negro u hoyo negro:


  Es una región finita del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que genera un campo gravitatorio tal que ninguna partícula material, ni siquiera los fotones de luz, pueden escapar de dicha región.

La curvatura del espacio-tiempo o «gravedad de un agujero negro» provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es una consecuencia de las ecuaciones de campo de Einstein. El horizonte de sucesos separa la región del agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz. 

Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking, Ellis y Penrose demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros.3 Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.
Se cree que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas.

Recreateoficial

 Horizonte de sucesos : 
   El horizonte de sucesos es una superficie imaginaria de forma esférica que rodea a un agujero negro, en la cual la velocidad de escape necesaria para alejarse del mismo coincide con la velocidad de la luz. Por ello, ninguna cosa dentro de él, incluyendo los fotones, puede escapar debido a la atracción de un campo gravitatorio extremadamente intenso.

La radiación de Hawking es un tipo de radiación producida en el horizonte de sucesos de un agujero negro y debida plenamente a efectos de tipo cuántico. La radiación de Hawking recibe su nombre del físico inglés Stephen Hawking quien postuló su existencia por primera vez en 1976 describiendo las propiedades de tal radiación y obteniendo algunos de los primeros resultados en gravedad cuántica. El trabajo de Hawking fue posterior a su visita a Moscú en 1973, donde los científicos rusos Yakov Zeldovich y Alexander Starobinsky le demostraron que de acuerdo con el principio de incertidumbre de la mecánica cuántica los agujeros negros en rotación deberían crear y emitir partículas.
Posteriormente Paul Davies y Bill Unruhprobaron que un observador acelerado u observador de Rindler en un espacio-tiempo plano de Minkowski también detectaría radiación de tipo Hawking.



El concepto de un cuerpo tan denso que ni la luz pudiese escapar de él, fue descrito en un artículo enviado en 1783 a la Royal Society por un geólogo inglés llamado John Michell. Por aquel entonces la teoría de Newton de gravitación y el concepto de velocidad de escape eran muy conocidas. Michell calculó que un cuerpo con un radio 500 veces el del Sol y la misma densidad, tendría, en su superficie, una velocidad de escape igual a la de la luz y sería invisible. En 1796, el matemático francés Pierre-Simon Laplace explicó en las dos primeras ediciones de su libro Exposition du Systeme du Monde la misma idea aunque, al ganar terreno la idea de que la luz era una onda sin masa, en el siglo XIX fue descartada en ediciones posteriores.
En 1915, Einstein desarrolló la relatividad general y demostró que la luz era influenciada por la interacción gravitatoria. Unos meses después, Karl Schwarzschild encontró una solución a las ecuaciones de Einstein, donde un cuerpo pesado absorbería la luz. Se sabe ahora que el radio de Schwarzschild es el radio del horizonte de sucesos de un agujero negro que no gira, pero esto no era bien entendido en aquel entonces. El propio Schwarzschild pensó que no era más que una solución matemática, no física. En 1930, Subrahmanyan Chandrasekhar demostró que un cuerpo con una masa crítica, (ahora conocida como límite de Chandrasekhar) y que no emitiese radiación, colapsaría por su propia gravedad porque no había nada que se conociera que pudiera frenarla (para dicha masa la fuerza de atracción gravitatoria sería mayor que la proporcionada por el principio de exclusión de Pauli). Sin embargo, Eddington se opuso a la idea de que la estrella alcanzaría un tamaño nulo, lo que implicaría una singularidad desnuda de materia, y que debería haber algo que inevitablemente pusiera freno al colapso, línea adoptada por la mayoría de los científicos.
En 1939, Robert Oppenheimer predijo que una estrella masiva podría sufrir un colapso gravitatorio y, por tanto, los agujeros negros podrían ser formados en la naturaleza. Esta teoría no fue objeto de mucha atención hasta los años 60 porque, después de la Segunda Guerra Mundial, se tenía más interés en lo que sucedía a escala atómica.
En 1967, Stephen Hawking y Roger Penrose probaron que los agujeros negros son soluciones a las ecuaciones de Einstein y que en determinados casos no se podía impedir que se crease un agujero negro a partir de un colapso. La idea de agujero negro tomó fuerza con los avances científicos y experimentales que llevaron al descubrimiento de los púlsares. Poco después, en 1969, John Wheeler acuñó el término "agujero negro" durante una reunión de cosmólogos en Nueva York, para designar lo que anteriormente se llamó "estrella en colapso gravitatorio completo".

Clasificación teórica:

Según la masa:

  • Agujeros negros supermasivos: con masas de varios millones de masas solares. Se hallarían en el corazón de muchas galaxias. Se forman en el mismo proceso que da origen a las componentes esféricas de las galaxias.
  • Agujeros negros de masa estelar. Se forman cuando una estrella de masa 2,5 mayor que la masa del Sol se convierte en supernova e implosiona. Su núcleo se concentra en un volumen muy pequeño que cada vez se va reduciendo más.
  • Micro agujeros negros. Son objetos hipotéticos, algo más pequeños que los estelares. Éstos pueden llegar a evaporarse en un período relativamente corto fácilmente mediante emisión de radiación de Hawking si son suficientemente pequeños.

Según sus propiedades físicas:

   Para un agujero negro descrito por las ecuaciones de Einstein, existe un teorema denominado de sin pelos (en inglés No-hair theorem), que afirma que cualquier objeto que sufra un colapso gravitatorio alcanza un estado estacionario como agujero negro descrito sólo por 3 parámetros: su masa M, su carga Q y su momento angular J. Así tenemos la siguiente clasificación para el estado final de un agujero negro:

Descubrimientos recientes:

En 1995 un equipo de investigadores de la UCLA dirigido por Andrea Ghez demostró mediante simulación por ordenadores la posibilidad de la existencia de agujeros negros supermasivos en el núcleo de las galaxias. Tras estos cálculos mediante el sistema de óptica adaptativa se verificó que algo deformaba los rayos de luz emitidos desde el centro de nuestra galaxia (la Vía Láctea). Tal deformación se debe a un invisible agujero negro supermasivo que ha sido denominado Sgr.A (o Sagittarius A). En 2007-2008 se iniciaron una serie de experimentos de interferometría a partir de medidas de radiotelescopios para medir el tamaño del agujero negro supermasivo en el centro de la Vía Láctea, al que se le calcula una masa 4'5 millones de veces mayor que la del Sol y una distancia de 26.000 años luz (unos 255.000 billones de km respecto de la Tierra).4 El agujero negro supermasivo del centro de nuestra galaxia actualmente sería poco activo ya que ha consumido gran parte de la materia bariónica, que se encuentra en la zona de su inmediato campo gravitatorio y emite grandes cantidades de radiación.
Por su parte, la astrofísica Feryal Özel ha explicado algunas características probables en torno a un agujero negro: cualquier cosa, incluido el espacio vacío, que entre en la fuerza de marea provocada por un agujero negro se aceleraría a extremada velocidad como en un vórtice y todo el tiempo dentro del área de atracción de un agujero negro se dirigiría hacia el mismo agujero negro.
En el presente se considera que, pese a la perspectiva destructiva que se tiene de los agujeros negros, éstos al condensar en torno a sí materia sirven en parte a la constitución de las galaxias y a la formación de nuevas estrellas.
En junio de 2004 astrónomos descubrieron un agujero negro súper masivo, el Q0906+6930, en el centro de una galaxia distante a unos 12.700 millones de años luz. Esta observación indicó una rápida creación de agujeros negros súper masivos en el Universo joven.
La formación de micro agujeros negros en los aceleradores de partículas ha sido informada,5 pero no confirmada. Por ahora, no hay candidatos observados para ser agujeros negros primordiales.

El mayor:

Dejando a un lado los agujeros negros supermasivos que suelen estar en el núcleo de las galaxias y cuya masa son de millones de veces nuestro Sol, el mayor agujero negro de masa estelar conocido hasta la fecha, se descubrió el año 2007 y fue denominado IC 10 X-1. Está en la galaxia enana IC 10 situada en la constelación de Casiopea, a una distancia de 1,8 millones de años luz (17 billones de kilómetros) de la Tierra, con una masa de entre 24 y 33 veces la de nuestro Sol.6
Posteriormente, en abril de 2008, la revista Nature publicó un estudio realizado en la Universidad de Turku (Finlandia). Según dicho estudio, un equipo de científicos dirigido por Mauri Valtonen descubrió un sistema binario, un blazar, llamado OJ 287, en la constelación de Cáncer. Tal sistema parece estar constituido por un agujero negro menor que orbita en torno a otro mayor, siendo la masa del mayor de 18.000 millones de veces la de nuestro Sol, lo que lo convierte en el mayor agujero negro conocido. Se supone que en cada intervalo de rotación el agujero negro menor, que tiene una masa de 100 millones de soles, golpea la ergosfera del mayor dos veces, generándose un quásar. Situado a 3500 millones de años luz de la Tierra,7 está relativamente cerca de la Tierra para ser un quásar.

El menor:

Sin contar los posibles microagujeros negros que casi siempre son efímeros al producirse a escalas subatómicas; macroscópicamente en abril de 2008 el equipo coordinado por Nikolai Saposhnikov y Lev Titarchuk ha identificado el más pequeño de los agujeros negros conocidos hasta la fecha; ha sido denominado J 1650, se ubica en la constelación Ara (o Altar) de la Vía Láctea (la misma galaxia de la cual forma parte la Tierra). J 1650 tiene una masa equivalente a 3,8 soles y tan solo 24 km de diámetro se habría formado por el colapso de una estrella; tales dimensiones estaban previstas por las ecuaciones de Einstein. Se considera que son prácticamente las dimensiones mínimas que puede tener un agujero negro ya que una estrella que colapsara y produjera un fenómeno de menor masa se transformaría en una estrella de neutrones. Se considera que pueden existir muchos más agujeros negros de dimensiones semejantes.

Chorros de plasma:

En abril de 2008 la revista Nature publicó un estudio realizado en la Universidad de Boston dirigido por Alan Marscher donde explica que chorros de plasma colimados parten de campos magnéticos ubicados cerca del borde de los agujeros negros. En zonas puntuales de tales campos magnéticos los chorros de plasma son orientados y acelerados a velocidades cercanas a c (velocidad de la luz), tal proceso es comparable a la aceleración de partículas para crear una corriente de chorro (jet) en un reactor. Cuando los chorros de plasma originados por un agujero negro son observables desde la Tierra tal tipo de agujero negro entra en la categoría de blazar.
Que un agujero negro "emita" radiaciones parece una contradicción, sin embargo esto se explica: todo objeto (supóngase una estrella) que es atrapado por la gravitación de un agujero negro, antes de ser completamente "engullido", antes de pasar tras el horizonte de sucesos, se encuentra tan fuertemente presionado por las fuerzas de marea del agujero negro en la zona de la ergosfera que una pequeña parte de su materia sale disparada a velocidades próximas a la de la luz (como cuando se aprieta fuertemente una naranja: parte del material de la naranja sale eyectado en forma de chorros de jugo, en el caso de los objetos atrapados por un agujero negro, parte de su masa sale disparada centrífugamente en forma de radiación fuera del campo gravitatorio de la singularidad).

Formación de estrellas por el influjo de agujeros negros:

Nuevas estrellas podrían formarse a partir de los discos elípticos en torno a agujeros negros; tales discos elípticos se producen por antiguas nubes de gas desintegradas previamente por los mismos agujeros negros; las estrellas producidas por condensación o acreción de tales discos elípticos al parecer tienen órbitas muy elípticas en torno a los agujeros negros supermasivos.

Agujero de gusano:

En física, un agujero de gusano, también conocido como un puente de Einstein-Rosen y en malas traducciones "agujero de lombriz", es una hipotética característica topológica del espacio-tiempo, descrita por las ecuaciones de la relatividad especial, la cual es esencialmente un "atajo" a través del espacio y el tiempo. Un agujero de gusano tiene por lo menos dos extremos, conectados a una única "garganta", pudiendo la materia 'desplazarse' de un extremo a otro pasando a través de ésta.

El primer científico en advertir de la existencia de agujeros de gusanos fue Ludwig Flamm en 1916. En este sentido la hipótesis del agujero de gusano es una actualización de la decimonónica teoría de una cuarta dimensión espacial que suponía -por ejemplo- dado un cuerpo toroidal en el que se podían encontrar las tres dimensiones espaciales comúnmente perceptibles, una cuarta dimensión espacial que abreviara las distancias, y así los tiempos de viaje. Esta noción inicial fue plasmada más científicamente en 1921 por el matemático Hermann Weyl en conexión con sus análisis de la masa en términos de la energía de un campo 
electromagnético.


Esquema de un agujero de gusano que permite técnicamente el viaje a través del tiempo.


 Uno de los factores que impiden actualmente al ser humano viajar hacia el futuro es la imposibilidad de alcanzar la velocidad de la luz  .

Velocidad de la luz desde la Tierra a la Luna.




Los equivalentes de viaje temporal y viaje a la velocidad de la luz:


Podemos señalar que si alguien es capaz de mover información de un punto a otro más rápido que la velocidad de la luz, de acuerdo a la relatividad especial, eso equivale a que un observador percibe una transferencia de información hacia el pasado. Por otro lado no se han propuesto mecanismos físicos que sugieran que esa posibilidad es técnicamente viable de acuerdo con la relatividad especial.

La teoría general de la relatividad por su parte ofrece algunas posibilidades teóricas adicionales. Esta teoría formulada por Einstein generaliza la teoría especial de la relatividad que hemos considerado hasta ahora. Esta teoría además de su mayor generalidad es capaz de describir adecuadamente la gravedad desde un punto de vista relativista. La interpretación de la gravedad que hace esta teoría es que la materia “curva” el espacio y el tiempo que se encuentra a su alrededor. Estas propiedades de la curvatura abren nuevas posibilidades para el viaje a través del tiempo:
  • Teóricamente existen soluciones de las ecuaciones que incluyen líneas temporales que se curvan alrededor de un círculo y se reconecten con su propio pasado. La primera y más famosa de estas soluciones, conocida como universo de Gödel, fue hallada por Kurt Gödel, aunque dicha solución atribuye al universo ciertas características físicas que no parecen corresponderse con las de nuestro universo. La teoría de la relatividad general en sí misma no prohíbe la curva temporal cerrada o curva cerrada de tipo tiempo (traducción literal del inglés closed timelike curve), que puede llegar a aparecer en las soluciones de las ecuaciones. Sin embargo, la mayoría de los físicos cree que es necesario explicar correctamente las condiciones si se pretende una descripción completa y realista, es decir, las condiciones adicionales, las cuales, de no cumplirse, eliminarían la posibilidad de las curvas temporales cerradas debido a sus implicaciones paradójicas, por ejemplo aquellas que se relacionan con la hipotética retrocausalidad (la posibilidad que tendría el viajero al pasado de influir en el mismo, con los consiguientes resultados en el presente, según vemos contempla la paradoja del abuelo).
  • Existe además la posibilidad de que diferentes regiones del espacio inicialmente separadas entren en contacto mediante la formación de un "puente" o "agujero de gusano". En general estas requerirían pasar por estados topológicamente no equivalentes que involucren "rasgado" del espacio-tiempo, posibilidad recientemente considerada en la teoría de cuerdas y explicado divulgativamente por Brian Greene en El universo elegante.
Conclusión :
Nuestra nave viajando a gran velocidad en un camino con origen y regreso a la Tierra es una máquina del tiempo para viajar al futuro que, en la medida en que seamos capaces de incrementar su velocidad, nos puede llevar sin envejecer a cualquier tiempo posterior al nuestro.

Lamentablemente el ser humano no sabe como producir tanta energía como para viajar a esa velocidad .

 

Profecías: información del futuro

En la teología judeo-cristiana, por ejemplo, se supone que el Dios Yahveh existe sin ser limitado por el espacio o el tiempo. Según esta doctrina, Yahvé es omnisciente y omnipresente. Algunas declaraciones en la Biblia, tales como la de Jesús: “Antes de que Abraham naciera, yo soy” (Juan 8.58) y la de Pedro: “Jesús fue elegido antes de la creación del mundo” (1 Pedro 1.20) siempre asumiendo que la creación del mundo comenzó en t = 0) implica que Yahvé no se rige por la misma línea temporal que la nuestra, o bien que establece los principios rectores de la misma. Esto es apoyado por la aserción “Yo, el Señor, no cambió” (Malaquías 3.6), ya que un cambio requeriría desplazamiento de un lugar a otro y ser contenido por una serie temporal continua.
Dos interpretaciones temporales de estas declaraciones son que Yahvé: 1) existiría fuera del continuo espacio-tiempo; o que 2) Yahvé existiría simultáneamente en cualquier punto del espacio-tiempo. En cualquier caso, Yahvé podría transferir sin restricciones información de un punto del espacio-tiempo a cualquier otro punto.

Fuente: MOVISTAR  LINEA DIRECTA (SEGURO ) STRATO GUESS INFOJOBS  Electrónica  Recreateoficial  Enterate de lo nuevo   Encuentra Pareja,Registrate !!!Gratis!!!